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Abstract 

This study offers a comparative analysis of parametric, semi-parametric, and non-

parametric techniques of survival data analysis. It focuses on assessing the methods in 

terms of their efficiency in estimating survival probabilities and hazard functions. 

Alternate real and simulated datasets are then utilized to assess the relative strengths and 

weaknesses of different approaches with respect to efficiency, flexibility, and 

interpretability. The results indicate that the choice of technique is a factor of the 

underlying data characteristics, with parametric models working quite well under specific 

assumptions, semi parametric methods balancing between the structure and flexibility, 

while the nonparametric ones have the best performance in scenarios driven by the data. The 

AIC and BIC values determined from the model selection process demonstrated that the model 

finding fits the best under the given conditions as it has the smallest AIC and BIC scores. 

This is because AIC and BIC balance between goodness of fit and complexity in the model. 

For the Cox proportional hazard model results, most variables tested in the analysis 

showed very few statistically significant p- values. Results from Kaplan-Meier survival 

analysis strengthened the model by providing critical survival probability key stages over time, 

indicating the most occurrences beyond 60 months marked significant declines in survival rates. 

Hence, since the determined model com- bines predictive accuracy with interpret-ability, it 

should have as few but robust elements as would be meaningful in survival prediction without 

over-fitting. Therefore, the final model selection is based on the best compromise between 

explanatory power and statistical validity. 

 

Keywords:  Breast Cancer Survival, Kaplan-Meier, Cox Model, Parametric Models, 

Weibull, Exponential, Lognormal, Log Logistic

  

mailto:inamurrahman85@gmail.com
mailto:nasir_stat@uaar.edu.pk
mailto:abid0100@gmail.com
mailto:mehvish.raja2080@gmail.com
https://10.1.21.233/rjsp.v3i1.164


944 
 

Introduction

Breast cancer is the most commonly diagnosed cancer among women and a leading cause of 

cancer-related death globally Ferlay et al. (2021). The survival rates, considered together, 

vary widely due to several clinical and pathological characteristics: tumor size, lymph node 

involvement, hormonal receptor status, and efficacy of treatment regimens Siegel et al. (2023). 

Understanding these factors is crucial for developing personalized treatment designs and, thus, 

improving patient outcomes. Survival analysis provides a statistical method through which 

one may consider the time-to-event data in medical research, and such consideration is critical 

in predicting the survival of patients for decision-making Collett (2015). 

 

Survival analysis methods are broadly categorized into non-parametric, semi-parametric, and 

parametric models, with the **Kaplan-Meier estimator** being considered the most popular 

non-parametric method for estimating the survival probabilities over time without assuming an 

underlying probability distribution Kaplan and Meier (1958). In this case, survival functions 

are commonly depicted or compared between groups in clinical studies, while they ignore the 

effects posed by covariates. The limitation in this regard is solved by the use of the *Cox 

proportional hazards model, * which is semi-parametric Cox (1972). This model for instance 

provides an estimate of hazard ratios for the effect of covariates, while using as few assumptions 

as possible about the baseline hazard function and thus remains one of the most widely-used 

survival analysis techniques within epidemiologic studies Therneau and Grambsch (2000). 

On the one hand, Cox models have the advantage of being flexible; however, they do not 

assume a particular survival distribution. Their prediction may therefore lack accuracy in 

some datasets. On the other hand, parametric survival models like the **Weibull, log-normal, 

log-logistic and exponential distributions** lend themselves to a more formal approach resting 

on the assumption of a known probability distribution for survival times Lawless (2011). 

Therefore, they are often more suitable in applications when the true survival function aligns 

with a specific distribution. On the other hand, the **Weibull model** dominates the two 

domains of reliability and medical research were increasing and decreasing hazard rates need 

to be modeled Meeker and Escobar (1998). The **log-normal model** applies well in 

situations where survival times are right-skewed, and the **log-logistic model** is 

appropriate when hazard rates increase initially and decrease later Klein and Moesch Berger 

(2003). 

Kaplan-Meier estimation, Cox regression, and several parametric models (Weibull, log-

normal, log- logistic, and exponential) have been applied for breast cancer survival data. The 

main objective is to compare these techniques as well as to assess their effectiveness in 

predicting survival probabilities and determining factors that significantly affect breast cancer 

mortality. Models chosen based on statistical criteria such as **Akaike Information Criterion 

(AIC)**, **Bayesian Information Criterion (BIC)**, etc. help to find the best-fitting model 

for survival analysis Burnham and Anderson (2002). 

By comparing different techniques of survival analysis, a research goal will definitely gain 

insight into breast cancer in the future, as far as scrutinizing the statistical methodologies used 

in medical research is concerned. Results in this study will go a long way in equipping 

clinicians and researchers towards picking the most appropriate patient survival prediction 

models and, thus, making more informed treatment decisions. 

There are many problems that arise in analyzing data. Broadly, these are as follows: (1) How 

to select a statistical model for estimation of parameters and (2) how to relate biological 
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information with statistical modeling. To tackle these problems, efficient methods and 

computational software have their utility. We can state a mathematical expression in terms of 

probability as: to analyze the survival time of a patient till time point t. 

S(t) = P [T > t]. (1) 

To cope with these challenges, you need methods and computer packages that work 

efficiently. In free R, package” survival” is used to apply these methods. The survival package 

provides functions for a CPH model, KM method, and parametric models for discrete and 

continuous outcomes. 

In this paper we analysis the effect of breast cancer by using different variable. The section 1 

represent the importance of survival analysis in the field of medical breast cancer. In this 

section 2 we talk about method and formulas here we use. The third section 3 is about data and 

evaluation criteria. The fourth section 4 is about Results and discussion. The fifth section 5 about 

the conclusion of this research paper. 

Method and Technique 

Kaplan-Meier Estimation Method 

In breast cancer survival analysis, the Kaplan-Meier estimate is generally upheld as a method 

in which survival probabilities are estimated for various treatment regimens and to allow for the 

handling of censored data-cases in which the patient is lost to follow-up or is alive at the end 

of the study Kaplan and Meier (1958). Treatment would then be evaluated by estimating 

differences in survival among patients receiving different treatments (e.g., chemotherapy 

versus surgery), thereby calculating the effect of factors like tumor stage, hormone receptor 

status, and lymph node involvement on survival Blanche et al. (2013). The Kaplan-Meier 

survival function is expressed as: 

𝑆(𝑖) = ∏ (1 −
𝐾ℎ

𝑁𝑔
)

𝑔:.𝑔.𝑗≤𝑖

                              (2) 

Where 𝑖𝑔 is the observed time for the g-th event, 𝐾ℎ is the number of events (e.g., deaths) that 

occurred at time 𝑖𝑔, and 𝑋𝑖 is the number of individuals at risk just before time. 

The Kaplan-Meier survival curve is stepwise, declining at each event time, with censored 

observations marked on the plot. The log-rank test assesses whether survival distributions differ 

significantly between groups Peto et al. (1977). 

Cox Proportional Hazards model 

In breast cancer studies, the Cox proportional hazard model analyzes the relationship between 

survival times and one or more variables like age, tumor size, hormone receptors, and lymph 

node involvement. This semi-parametric model is advantageous since it makes no 

assumptions concerning the nature of the underlying baseline hazard function and thus can 

concentrate on explaining the effects of the explanatory variables and also accepts censored 

data Cox (1972). Within the model, it is assumed that a hazard ratio for two individuals 

remains constant with respect to time and is defined as: 

𝑘(𝑖|𝑋) = 𝑘0(𝑖). 𝑒𝛽1𝑦1+𝛽2𝑦2+𝛽3𝑦3............𝛽𝑛𝑦𝑛             (3)   
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Where ℎ(𝑗|𝒀): Hazard rate at time j for an individual with covariates 𝒀, ℎ0(𝑗): Baseline 

hazard function meaning hazard when all covariates are zero, 𝛽1, 𝛽2, . . . , 𝛽𝑛 are regression 

coefficients defining the effect of covariates. 

In breast cancer, the Cox model permits clinicians to evaluate the influence of many risk 

factors concurrently, thus facilitating the identification of patients at high risk of 

recurrence or death Bland & Altman (1998). The model is strongly applied in any clinical 

research and leads to more individualized therapy for breast cancer patients. 

Parametric Models 

The Cox Proportional Hazards (CPH) model assesses the influence of the predictors on the 

time deviation from some event. It assumes that the effect of these predictors is time-constant-

proportional. Parametric survival models may also be ill-suited if the random variable’s 

distribution is normal. However, some are better suited to be chosen from among an array of 

parametric distributions: the Weibull, exponential, log-normal, and log-logistic distributions. 

The exposure to the Weibull distribution can thus be stated as: 

𝑓(𝑦|𝜎, 𝑝) =
𝑝

𝜎
(

𝑦

𝜎
)

𝑝−1

𝑒
(− 

𝑦𝑝

𝜎
)
,  𝑦 > 0, 𝜎 > 0, 𝑝 > 0      (4) 

The exponential distribution is expressed as 

𝑓(𝑥|𝜎) =
1

𝜎
𝑒(− 

𝑥

𝜎
)
,  𝑥 > 0, 𝜎 > 0                              (5) 

The log-normal distribution is defined as 

𝑓(𝑥|𝜇, 𝜎2) =
1

𝑥𝜎√2𝜋
𝑒

(− 
(𝑙𝑛 𝑥 −𝜇)2

2𝜎2 )
,  𝑥 𝜖 (0, ∞)           (6) 

the log-logistic distribution is given by 

𝑓(𝑥|𝛼, 𝛽) =
(

𝛽

𝛼
)(

𝑥

𝛼
)

𝛽 − 1

(1+(
𝑥

𝛼
)

𝛽
)

2,    𝑥 > 0, 𝛼 > 0, 𝛽 > 0      (7) 

Limitations of Clinical Data for Kaplan-Meier, Cox Hazard, and Parametric Models 

Survival analysis is an integral part of clinical research, and several models such as the Cox 

proportional hazards model, the Kaplan–Meier estimator, parametric survival models, and 

Bayesian approaches provide a basis within which clinical investigators can assess survival time 

data. Survival analysis methods, however, come with their own distinct limitations. The Cox model 

Cox (1972), for instance, assumes proportional hazards over time; this assumption is not tenable 

all the time in clinical practice, especially in circumstances with treatment effects that vary with 

time, and it does not give any direct estimation for the baseline hazard. The Kaplan–Meier 

estimator Kaplan and Meier (1958) remains the most robust non-parametric estimator of survival 

functions; however, it is limited to univariate analysis, thereby unable to adjust for any 

confounding covariate that would have decreased its utility in an inherently heterogeneous 

population of patients. Parametric survival models require that an investigator assume a specific 

distribution (for example, exponential, Weibull, or log-normal), and a poor choice of distribution 

can lead to biased estimates and erroneous inferences. 
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Data and Evaluation Criteria 

Data 

It is a dataset of patients of breast cancer which is taken from the SEER program of the National 

Cancer Institute e.g. November update of the year 2017. The program provides such extensive 

statistics for cancers based on population data. It denotes the numbers for women diagnosed as 

having invasive breast cancer in the years 2000 to 2017. The associated records shown are of a 

patient’s age, race, ethnicity, cancer, stage of cancer, size, and treatment grade to them in-a-broad-

catchment of statics Teng (2019). for a few seconds. For analysis, we used a dataset available on 

Kaggle accessed through this link: Breast Cancer ML Notebook. It provides a well-focused picture 

of class hence imprints patient demographics like age, race, ethnicity, and clinical 

hematomorphology, such as stage of disease, size, and grade of tumor, along with the treatments 

given. This is followed by 

Evaluation Criteria 

Model selection for clinical data generally depends on Akaike Information Criterion (AIC) and the 

Bayesian Information Criterion (BIC) Bu¨tepage et al. (2022). Developed by Hirotugu Akaike in 

1974, the AIC assesses a model’s goodness of fit while penalizing complexity by adding a term of 

2k, where k is the number of model parameters Akaike (1974). The AIC is given by 

𝐴𝐼𝐶 =  −2 ·  𝑙𝑛(�̂�)  +  2𝑘,                 (8) 
with Lˆ representing the maximum likelihood of the fitted model. In contrast, the BIC applies a 

harsher penalty, using k · ln(n) (with n as the sample size) in its formula 

𝐵𝐼𝐶 =  −2 ·  𝑙𝑛(�̂�)  +  𝑘 ·  𝑙𝑛(𝑛).                 (9) 
This further increased penalty made BIC much more conservative than AIC and makes it keep 

preferring simpler and hence more interpretable models in throw with greater data. Most often AIC 

is selected for improving predictive accuracy while, for simplicity and clarity, BIC is chosen. Both 

criteria relate model-fitted complexity, with divergent selection outcomes for models. 

Results and Discussion 

Kaplan-Meier survival analysis of 4,024 breast cancer patients indicates important survival 

features figure 1a and 2b. Of these patients, 3,408 (85%) were events during the follow-up 

study period, which means breast cancer has enormous significance for survival. The most 

reliable estimation of median survival time was 78 months (95% CI: 77-79 months), which is 

equally explained in this article prepared accordingly table 1. This analysis is an important 

benchmark for understanding patient outcomes that could serve comparative studies, treatment 

assessments, and prognostic models. 

Table 1: Kaplan-Meier survival 

N Events Median 0.95LCL 0.95UCL 

4024 3408 78 77 79 

The Kaplan-Meier survival analysis of 4,024 breast cancer patients has for long revealed a 

marked decrease in survival probabilities with time. The survival rate in table 2 shows that 

survival remains at its best initially, with a survival probability of 99.98% at 1 month and 

https://www.kaggle.com/code/smailaar/breast-cancer-ml/notebook
https://www.kaggle.com/code/smailaar/breast-cancer-ml/notebook
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99.5% at 10 months. Conversely, survival steadily declines with passing time, with 92.3% 

surviving at 50 months and 77.85% at 60 months. Five years later, the survival rate decreases  

further to 61.47% at 70 months and 45.84% at 80 months. The median survival time is  

Figure 1: Kaplan-Meier Survival Analysis 

 

approximately 78 months, with a 95 % confidence interval of 77 to 79 months. Subsequently, 

with 29.46% surviving at 90 months and only 11.97% at 100 months, there was a steeper 

decline in survival rates. The survival probability rests at zero from 107 months into table 2. 

This analysis lays bare aspects of extreme significance regarding the long-term prognosis of 

breast cancer patients and indicates feasibility for putting in place targeted interventions for 

improving patient outcome. 

 

(a) Kaplan-Meier Survival Curve (Overall)      

(b) Kaplan-Meier Survival Curve (Heatmap) 

 

The factors influencing survival time in breast cancer patients are examined by the evaluation of 

several clinical and demographic factors in the univariate Cox proportional hazards 

analysis and discussed in table 3. Of the factors analyzed, tumor differentiation (p = 

0.0057), tumor grade (p = 0.0059), estrogen receptor status (p = 0.0039), and progesterone 

receptor status (p = 0.0001) show statistically significant associations with survival. In 

poorly differentiated tumor HR = 1.079 connotes a poor prognosis, since aggressive tumors 

are often associated with rapid disease progression, while a higher tumor grade HR = 0.9269 

seems to favor survival when confounding factors may play a role. Whereas in some instances, 

hormone receptor-positive tumors may be associated with distinct disease progression pattern 

or resistance to treatment, in this study contrarily estrogen receptor-positive tumors (HR = 

1.2632) and progesterone receptor-positive tumors (HR = 1.2155) were assessed to correlate 

with poorer survival. 
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Table 2: Kaplan-Meier Survival Estimates for Breast Cancer Patients 

Time n.risk n.event Survival Std. Err 
Lower 

95% CI 

Upper 

95% CI 

1 4024 1 0.9998 0.000248 0.9993 1 

2 4023 1 0.9995 0.000351 0.9988 1 

3 4020 2 0.999 0.000497 0.998 1 

4 4016 1 0.9988 0.000556 0.9977 0.9998 

5 4006 2 0.9983 0.000658 0.997 0.9995 

7 3992 1 0.998 0.000703 0.9966 0.9994 

8 3987 5 0.9968 0.000898 0.995 0.9985 

9 3980 5 0.9955 0.001057 0.9934 0.9976 

10 3971 2 0.995 0.001115 0.9928 0.9972 

. . . . . . . 

. . . . . . . 

106 108 47 0.0195 0.002458 0.0152 0.0249 

107 61 61 0 NaN NA NA 

 

Lymph node involvement or not (N Stage, p = 0.0869) showed a near-significant association, 

in other words, with a possible trend of greater lymph node metastases leading to reduced 

survival. The number of examined regional lymph nodes and the number of positive regional 

lymph nodes did not significantly affect the survival rate (p = 0.05). These results suggest that 

tumor differentiation and hormone receptor status are of great importance in predicting breast 

cancer prognosis, while traditional staging measures may need further evaluation in a 

multivariate setting to determine their independent effect on survival. 

Hazard ratios (HRs) calculated by Cox regression model make a comparison of clinical 

characteristics with their respective effect by time-to-event outcomes. The dotted line red 

denotes HR=1 on the horizontal axis indicating no effect. Figure 2a, 2b. Those lying on the 

right of this line indicate increased risk of the event and those on the left indicate decreased 

risk. This figure suggests progesterone status and tumor grade were positively associated with 

hazards indicating increased risk (HR=1) as indicated by blue dots and confidence intervals 

that do not cross HR=1. Alternatively, estrogen status, differentiation, regional node 

examination, tumor size, age, regional node positivity, race, T stage, stage 6, N stage, and A 

stage remained without association to hazard. Their confidence intervals included HR=1, and 

are represented by black dots. Thus, the only significant predictor for this model about the 

timing of the event was progesterone status and tumor grade. 
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Figure 2: Kaplan-Meier Survival Analysis 

 

(a) Hazard Ratios from univariate Cox Regression Model   

(b) Kaplan-Meier Survival Curve (Heatmap) 

 

Overall Cox Proportional Hazards model outputs from Table 4 indicate that the majority of 

variables, including age, race, tumor stage, and nodal stage, do not appear to contribute 

significantly toward survival, as evidenced by their p-values remaining high. In contrast, 

the differentiation status (p = 0.04563, HR 

= 1.0587) and progesterone status (p = 0.00372, HR = 1.1716) emerge as important 

predictors. This suggests that good differentiation predicts for survival, while increased 

progesterone possibly elevates risk. 

 

Table 3: Univariate Cox Proportional Hazards Model Results 

Variable Coef Exp(coef) Se(coef) Z p-value 

Age -0.00012 0.999878 0.00197 -0.062 0.951 

Tumor Size 1.48E-05 1.0000 0.000844 0.018 0.986 

Race -0.00697 0.993053 0.028982 -0.241 0.81 

T Stage -0.01045 0.98961 0.02277 -0.459 0.646 

N Stage -0.04614 0.95491 0.02695 -1.712 0.0869 

6th Stage -0.01603 0.9841 0.01205 -1.331 0.183 

Differentiate 0.07624 1.07922 0.02756 2.766 0.00568 

Grade -0.07591 0.9269 0.02758 -2.752 0.00592 

A Stage -0.1444 0.8655 0.1337 -1.081 0.28 

Estrogen Status 0.23364 1.26318 0.08083 2.891 0.00385 

Progesterone Status 0.19518 1.21553 0.04875 4.004 6.23E-05 

Regional Node Examined 0.000857 1.000858 0.00215 0.399 0.69 

Regional Node Positive -0.00618 0.993839 0.003932 -1.572 0.116 
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The likelihood ratio test also gives a p-value of 0.01324 establishing overall significance of 

the model. But indeed, certain missing values of some variables, e.g. Grade, will muddle 

analysis. 

Table 4: Cox Proportional Hazards Model Results 

Variable Coef Exp(coef) Se(coef) Z p-value 

Age -0.000 0.9994253 0.0020566 -0.280 0.77983 

Race -0.002 0.9983641 0.0291400 -0.056 0.95519 

T Stage -0.029 0.9710620 0.0480210 -0.612 0.54087 

N Stage -0.028 0.9723141 0.0526061 -0.534 0.59354 

6th Stage 0.003 1.0030497 0.0201858 0.151 0.88009 

Differentiate 0.057 1.0587138 0.0285438 1.999 0.04563 

Grade NA NA 0.0000000 NA NA 

A Stage -0.062 0.9391242 0.1425507 -0.441 0.65950 

Tumor Size 0.002 1.0015828 0.0015890 0.995 0.31957 

Estrogen Status 0.095 1.0997141 0.0909288 1.045 0.29587 

Progesterone Status 0.158 1.1715649 0.0545890 2.901 0.00372 

Regional Node Examined 0.002 1.0027231 0.0023235 1.170 0.24184 

Regional Node Positive -0.00 0.9959572 0.0078611 -0.515 0.60633 

Marital Status (Married) 0.055 1.0570804 0.0546962 1.015 0.31016 

Marital Status (Separated) 0.294 1.3420310 0.1903413 1.546 0.12221 

Marital Status (Single) 0.011 1.011 0.0674363 0.173 0.86246 

Marital Status (Widowed) 0.033 1.034 0.0902525 0.375 0.70734 

The survival data are best fitted with the Weibull distribution according to the model 

comparisons. The use of AIC and BIC criteria reflects this choice because Weibull has the 

lowest AIC (30199.01) and BIC (30236.81) (See Table 5) which indicates an appropriate 

trade-off between goodness-of-fit and complexity in the model. Close in second is the log-

logistic model as indicated by its slightly higher AIC and BIC values: 30887.68 and 

30925.48, respectively. On the other hand, the exponential model has really poor performance, 

with retaining the record for highest AIC (37018.88) and BIC (37050.38), thus showing the 

very poor fit. The degree of importance of the variables is different in the different models. 

 

Table 5: Comparison of Survival Models 

Model 
Log-

Likelihood 
AIC BIC Significant Variables 

Weibull -15093.5 30199.01 30236.81 Estrogen Status (p = 0.025) 

Exponential -18504.4 37018.88 37050.38 
N Stage (p = 0.00076), Estrogen 

Status (p = 0.029) 

Lognormal -15970.3 31952.67 31990.47 
Age (p = 6.3e-5), Estrogen Status      

(p = 0.012) 

Loglogistic -15437.8 30887.68 30925.48 Estrogen Status (p = 0.011) 

The estrogen status is significant on all models and is a strong predictor for survival time. The 

age is significant in the log-normal model only; possibly its impact on survival time is better 

expressed under the assumptions of this specific distribution. N Stage is significant for the first 
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model for exponential death rate only which thus means it has more powerful effect when survival 

time is modeled using the exponential distribution. However, as the best-fitting model overall for 

the data was the Weibull model as shown in Figure 3, which has the lowest value on both AIC and 

BIC, it is therefore the most appropriate modeling for this data sets Survival time. Not all of these 

variables would be significant under every model, but the Weibull model was flexible enough to 

fit maximum types of hazard rates so that it would be the best representative of capturing the 

underlying survival patterns. 

 

 
Figure 3: Comparison of AIC and BIC Parametric model 

Discussion 

The results of this study provide insights into the factors influencing survival outcomes, as 

determined through model selection using the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). The model with the lowest AIC and BIC values was chosen as the 

best-fitting model, ensuring a balance between complexity and explanatory power. The Cox 

proportional hazards model identified key covariates affecting survival, though only a subset of 

these variables demonstrated statistical significance. This suggests that while multiple factors may 

contribute to survival, only a few have a pronounced impact when adjusted for other variables. 

Furthermore, the Kaplan-Meier survival analysis illustrated survival probabilities over time, 

revealing a marked decline beyond 60 months. This finding underscores the importance of long-

term monitoring and intervention strategies to improve survival rates. The consistency between 

the Kaplan-Meier estimates and the Cox model strengthens the robustness of our findings. 

However, despite the advantages of the Cox model, potential limitations such as proportional 

hazards assumption violations and unmeasured confounding factors should be considered. Overall, 

this study highlights the necessity of using a parsimonious yet informative model that balances 

interpretability and predictive accuracy. Future research should explore additional variables and 

alternative modeling technique 

 

Conclusion 

This study investigated the relationship between handwriting characteristics and the presence of 

neurological disorders using a case-control study design. By analyzing various handwriting 
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features across different tasks, we identified key variables that significantly differentiate 

individuals with neurological disorders from healthy controls. Our findings suggest that features 

such as writing pressure, execution time, and jerk movements play a crucial role in distinguishing 

between the two groups.  

 

The results demonstrate the potential of handwriting analysis as a non-invasive tool for early 

detection and diagnosis of neurological disorders. The predictive models developed in this study 

achieved promising classification performance, highlighting the feasibility of using handwriting 

biometrics for medical screening. However, limitations such as sample size constraints and 

potential confounding factors should be considered. Future research should explore larger datasets 

and incorporate machine learning techniques to enhance predictive accuracy.  

 

Overall, this study contributes to the growing field of digital health analytics, emphasizing the 

importance of handwriting analysis in neurological assessment. The insights gained from this 

research pave the way for developing automated diagnostic tools that can assist clinicians in early 

detection and intervention for neurological disorders. 
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