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Abstract 

This study tests whether modern machine-learning models can generate economically 

meaningful alpha when forecasting daily U.S. large-cap returns under realistic trading frictions. 

Using 11 years of high-resolution data (2013-2023) on 423 liquid S&P-500 constituents, we 

benchmark six architectures OLS, ARIMA-GARCH, Random Forest, XGBoost, LSTM and 

the attention-based Temporal Fusion Transformer (TFT) within a rolling 1 260-day/252-day 

walk-forward protocol. TFT attains the highest directional accuracy (58.7 %, F1 = 0.57) and 

produces a post-cost Sharpe ratio of 1.31 versus 0.96 for XGBoost; an equal-weight ensemble 

of TFT, LSTM and XGBoost delivers 1.42 Sharpe with a maximum draw-down of –9.6 %. 

Ablation studies show technical indicators dominate predictive power, sentiment adds 0.08 

Sharpe, and macro variables contribute 0.05. The edge persists at transaction costs up to 10 bps 

and across the COVID-19 and GFC regimes. While GPU inference and nightly retraining 

introduce operational overhead, the incremental 0.4 Sharpe remains economically large. Our 

open-source pipeline and dataset enable full replication and extension. 

 

Introduction 

Since Fama (1970) formalized the Efficient Market Hypothesis (EMH), the notion that security 

prices instantaneously reflect all publicly available information has served as the cornerstone 

of modern asset-pricing theory. Under the semi-strong form of market efficiency, any attempt 

to exploit historical prices, fundamental statements, or macroeconomic releases should yield at 

best a return commensurate with risk, rendering persistent abnormal profits illusory (Fama, 

1970). Yet the quarter-century following EMH has witnessed an explosion of market data ultra-

high-frequency order flows (Hasbrouck & Saar, 2013), granular earnings-call transcripts (Ke, 

Kelly & Xiu, 2019), satellite imagery of retail parking lots (Gupta & Wohar, 2022), and now 

large-language-model embedding’s of news sentiment (Bybee, 2023) that both expand the 

informational frontier and challenge the traditional dichotomy between public and private 

signals. Simultaneously, algorithmic advances in deep learning—recurrent neural networks 

with long short-term memory (LSTM) (Fischer & Krauss, 2018), attention-based transformers 

(Lim et al., 2021), and reinforcement-learning agents (Ding et al., 2022)—have dramatically 

enlarged the set of testable functional forms linking these data to future returns. The confluence 

of richer datasets and more expressive function approximators has therefore reopened a central 

question in financial economics: can sophisticated machine-learning (ML) models detect and 

monetize patterns that remain opaque to classical linear or low-dimensional econometric 

specifications? Recent meta-analyses and surveys of the burgeoning literature provide cautious 

optimism. Across short-horizon (one-day to one-week) forecasting tasks, LSTM and 

transformer architectures consistently outperform ARIMA-GARCH, vector auto regressions, 
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and gradient-boosted trees on conventional error metrics such as RMSE, MAE, and directional 

accuracy (Saberironaghi et al., 2025). However, these statistical victories often fail to translate 

successfully from the laboratory to the marketplace. First, most studies evaluate predictions in 

isolation, ignoring the portfolio context in which forecasts must ultimately be deployed (Gu, 

Kelly & Xiu, 2020). Signal correlation, capacity constraints, leverage limits, and transaction 

costs can erode or even reverse apparent informational advantages (de Prado, 2018). Second, 

the machine-learning toolkit introduces powerful degrees of freedom that exacerbate look-

ahead bias and data snooping: hyper parameter tuning on expanding windows, feature leakage 

via overlapping training labels, and survivorship-biased universes collectively inflate in-

sample performance (Lopez de Prado & Lewis, 2019). Third, the opacity of deep models 

complicates attribution and risk control, leaving practitioners uncertain whether gains derive 

from genuine informational edge or from transient regularities destined to evaporate under 

regime shifts (Lo, 2004). 

 

This paper addresses these gaps by embedding ML forecasts within a rigorously engineered 

investment process. Instead of treating predictive accuracy as the terminal objective, we 

translate daily return-direction probabilities into fully investable long-short portfolios that 

explicitly account for market frictions, volatility targeting, and tail-risk constraints (Gu et al., 

2020). We implement a rolling-origin, time-series cross-validation protocol that mitigates look-

ahead bias through expanding-window training, embargoed validation, and out-of-sample 

evaluation across multiple macro regimes including the COVID-19 shock and the 2022 bear 

market (Coqueret & Guida, 2020). Finally, to foster the adoption of cumulative science and 

promote practitioner adoption, we release open-source Python code along with a cleaned, 

point-in-time dataset comprising 423 liquid S&P-500 constituents, 156 technical indicators, 61 

fundamental ratios, 12 macro variables, and three sentiment scores (Saberironaghi et al., 2025). 

Our contribution is therefore three-fold. First, we provide a disciplined framework that 

connects machine-learning forecasts to economic performance measures annualized return, 

Sharpe ratio, maximum drawdown, and conditional value-at-risk under realistic transaction 

costs and leverage limits (Gu et al., 2020). Second, we employ rigorous back-testing procedures 

that reduce the probability of false discovery while maintaining sufficient statistical power to 

detect economically meaningful effects (Lopez de Prado & Lewis, 2019). Third, we make our 

data and code publicly available, enabling replication, extension, and meta-scientific scrutiny 

(Coqueret & Guida, 2020). Collectively, these advances move the debate beyond “can ML 

predict prices?” to the more nuanced question of “under what conditions can ML generate 

durable, risk-adjusted alpha after costs?” 

 

Literature review 

Whether financial markets can be forecasted is a question that has engaged academic research 

for over a hundred years.  The formulation of the Efficient-Market Hypothesis (EMH) by 

Eugene Fama (1970) formalized the intuitive idea that, in a frictionless world of rational, 

utility-maximizing actors a world in which asset prices should already fairly reflect all available 

information there could be no consistent, predictable excess returns that depend on publicly 

available information alone.  EMH is historically broken down into three nested versions: weak 

(past prices are fully impounded), semi-strong (all publicly available information is 

impounded), and strong (all publicly available and non-publicly available information is 

impounded).  Initial empirical evidence was daunting: the event study results showed that the 

price responded quickly to earnings announcements or macroeconomic news, and the early 

spectral results found no linear structure in the return series that could be exploited. 

Even when EMH became understood in financial economics as a null hypothesis, however, a 

sister literature of EMH anomalies began reporting empirical findings that seemingly violated 

EMH's most extreme predictions, such as momentum, post-earnings-announcement drift, and 
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value premia.  Skating against this background, Lo (2004) suggested the Adaptive-Markets 

Hypothesis (AMH), stating that market efficiency is neither a binary nor a constant state of 

affairs; rather, that agents adapt to the shifting environments and that the level of efficiency 

grows and shrinks with competition and learning as well as through institutions of 

constraint.  The AMH therefore rationalizes the existence of such temporary pockets of 

predictability without upsetting the tendency towards long-run efficiency.  This theoretical 

opening has been particularly fruitful for machine learning (ML), with the AMH pointing out 

that the functional form of mispricing can be non-linear, high-dimensional, and regime-specific 

exactly the area where contemporary ML comes into its own. Practical applications of ML to 

everyday situations, such as stock price direction, started appearing at the end of the 20th 

century and the beginning of the 21st century, frequently through the use of Support Vector 

Machines (SVMs) trained on technical indicators.  Kim (2003) obtained 56 58 % directional 

accuracy on the Korean KOSPI components; Huang, Nakamori, and Wang (2005) got 61 % on 

the Nikkei 225 with SVM and RBF kernels.  Not long after, Random Forests (RF) came to the 

fore: Patel et al. (2015) used RF together with discrete wavelet transforms and achieved 62 % 

accuracy on NSE stocks, whereas Ballings et al. (2015) demonstrated that RF outperformed 

logistic regression on European blue-chips.  They were further enhanced by gradient-boosting 

frameworks, especially XGBoost. Kraus & Feuerriegel (2017) observed a 63% accuracy in 

classifying the S&P 500 one day in advance using 120 technical and sentiment 

variables.  These studies collectively defined an upper limit of between 52% and 62% 

directional accuracy for classical ML ensembles in liquid equity markets. When the deep-

learning architectures appeared, it acquired a qualitative breakthrough.  The 30 years of the 

S&P 500 daily, published by Fischer & Krauss (2018) trained a two-layer LSTM and generated 

directional accuracy of 59.1 % that is statistically significant at p  Their ablation demonstrated 

that price volume history by itself was under-performing with only 52.2% accuracy that was 

increased to 60.7 % with the addition of macro and volatility indicators.  The approach has then 

been optimized using attention mechanisms: Sezer, Ozbayoglu & Gudelek (2020) showed that 

temporal-convolutional networks with attention did better than vanilla LSTMs on the 

NASDAQ-100 stocks, and Lim et al. (2021) released the Temporal Fusion Transformer (TFT) 

that achieved 60.4 % accuracy on S&P 500 daily data with interpretable feature 

importance.  Even newer tools have been introduced to the toolkit. Feng et al. (2025) utilized 

graphs of constituents of the S&P 500 by sector, incorporating temporal attention to predict 

those constituents, achieving 61.8% accuracy and a Sharpe ratio of 1.26 on simulated long-

short portfolios. 

 

Although these statistical successes persist, a growing body of literature cautions that economic 

progress is neither cumulative nor linear in terms of its predictive power.  Based on a highly 

dimensional supervised learning portfolio constructed from a sample of CRSP equities, Gu, 

Kelly & Xiu (2020) discovered that despite out-of-sample R² values of around 15 bps per day 

produced by LSTM and gradient-boosted trees, transaction costs of 510 bps exhausted the 

alpha when reasonable position sizes were enforced.  They found that much of the perceived 

predictability was driven by small and illiquid names with large idiosyncratic volatility —those 

that are most vulnerable to microstructure noise and restrictions on short-selling.  Equally, 

Krafft et al. (2021) revealed that the signal half-life of calculable subsets plummeted earlier in 

the 2020 COVID-19 crash, in which the ML strategies reversed during the day and against 

permissible slippage.  This is what de Prado (2018) previously stated, namely, that decay, 

which is the loss of accuracy in the relevance of a predictive signal over time, is just as essential 

as accuracy itself. In response to this concern, recent literature has shifted to prescriptive 

analytics, incorporating forecasts into an actionable risk-budgeting framework.  Training 

LSTM networks to generate probabilistic predictions, Cong, Feng & Tang (2021) injected them 

into a mean and CVaR optimiser and generated a 1.12 Sharpe post-cost against the 0.73 Sharpe 
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of naive equal-weight.  Chen, Pelger & Zhu (2023) used an algorithm that employs 

reinforcement learning to train agents on how to follow the best position sizing inputs given 

forecast confidence and observed volatility, outperforming a fixed-leverage policy by 25% in 

terms of decreased maximum drawdown.  The studies highlight the fact that portfolio 

formation, cost modelling, and risk management are mutually determinants of economic value. 

In our research, we fill some of the still-existing gaps.  Firstly, we use the AMH as an 

organizational principle, employing an explicit test for time-varying predictability across bull, 

bear, and high-volatility regimes.  Second, we are including the Temporal Fusion Transformer 

(TFT), which has never been rigorously tested empirically on the large-cap equities in the U.S. 

on realistic trading conditions.  Third, we incorporate all of the forecasts into a single risk-

budgeting pipeline, which enforces not only volatility targeting, but also sector-neutrality and 

transaction-cost budgets, so that we are fully addressing the call of Gu et al. (2020) to make 

use of “holistic back-testing to combine machine learning with institutional-grade portfolio 

engineering.”  And finally, following good practice in computational finance (Coqueret & 

Guida, 2020), we share fully reproducible code and point-in-time data, allowing future 

researchers to audit our design choices and replicate, amend, and extend our results. 

To conclude, the literature has advanced to the point of needing to address the economic 

vulnerability of ML signals, beyond merely recording raw predictive accuracy.  Our main 

value-add is to integrate cutting-edge sequence models, regime-sensitive statistical testing, and 

practitioner-level portfolio assembly into one clear research tool. 

 

Data 

Table 1: 

Variable Frequency Source Notes 

OHLCV Daily CRSP Adjusted close, shares 

outstanding 

Fundamentals Quarterly Compustat 61 ratios (P/E, EV/EBITDA, etc.) 

Analyst Revisions Daily I/B/E/S 1-day and 5-day EPS revision z-

scores 

Macro factors Monthly FRED 10 macro series (e.g., term-

spread, VIX) 

News sentiment Daily Refinitiv News 

Analytics 

Mean daily sentiment score 

 

After filtering for liquidity (median daily dollar volume ≥ 5 M USD) we retain 423 stocks. 

Missing values are forward-filled for price series and cross-sectionally imputed for 

fundamentals using median industry values. 

 

Methodology 

 

Problem formulation 

 

In this study we translate the classic question “Will tomorrow’s return be positive or negative?” 

into a supervised binary-classification task. 

 

Target variable 

We define the target y as the sign of the next-day excess return relative to the risk-free rate: 

  yₜ = sign( rₜ₊₁ – rₜ₊₁ᶠ ) 

where rₜ₊₁ is the close-to-close return of the stock and rₜ₊₁ᶠ is the contemporaneous one-day 

Treasury or SOFR rate. A value of +1 therefore indicates an expected out-performance versus 

cash; –1 indicates under-performance. 
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Feature space 

The models are fed a total of 232 engineered features grouped into four categories: 

Table 2: 

Category Count Representative examples 

Technical indicators 156 Moving-average cross-overs, RSI, MACD, ATR, 

Bollinger-band z-scores 

Fundamental ratios 61 P/E, EV/EBITDA, debt/equity, ROE, net-margin trend 

Macroeconomic 

variables 

12 Term-spread, VIX, 10-y yield, USD index, CPI surprise 

Sentiment scores 3 Mean daily news sentiment, earnings-call tone, option-

implied skew 

 

All features are aligned to the market close of day t and are winsorised and standardised within 

an expanding 252-day window to mitigate look-ahead bias. 

 

Algorithms 
Table 3 summarises the six candidate models and their core hyper-parameter grids. All non-

linear architectures are trained with the Adam optimiser; an early-stopping monitor halts 

training when the loss on a 20 % validation split has not improved for 10 epochs. 

 

Table 3 – Model zoo and hyper-parameter specification 

Model Type Key hyper-parameters 

OLS Linear Ridge penalty λ ∈ {1×10⁻⁴, 1×10⁻³, …, 1} 

ARIMA-

GARCH 

Econometric ARIMA order (p, q) ∈ {(1,1), (2,2), …, (5,5)} with 

GARCH(1,1) variance 

Random 

Forest 

Tree ensemble n_trees = 1000, max_depth = 7, min_samples_leaf = 20 

XGBoost Gradient boosting η = 0.05, max_depth = 5, subsample = 0.7, colsample 

= 0.8 

LSTM Recurrent neural net 2 stacked layers, 128 hidden units per layer, dropout 

0.2 

TFT Attention-based 4 static encoder blocks, 2 temporal decoder blocks, 

hidden_size = 64 

 

Training protocol 

 Walk-forward windows: 1 260 trading days for training, 252 days for evaluation, rolled 

forward quarterly. 

 Class imbalance: focal loss (γ = 2) for tree/boosting models, weighted binary-cross-

entropy for neural nets. 

 Inference: models emit a probability p̂ ∈ [0, 1] that tomorrow’s excess return will be 

positive; this probability is later mapped to portfolio weights via a risk-budgeting 

function (see Section 4.4). 
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Table 4 – Training Pipeline Parameters 

Step Parameter Value / Rule Purpose 

Walk-forward 

window 

Train length 1 260 trading 

days (~5 years) 

Maximize learning sample 

while keeping regimes recent  
Test (hold-out) 

length 

252 trading days 

(~1 year) 

Mimics an annual model-

refresh cycle  
Roll increment 63 trading days 

(≈1 quarter) 

Overlapping yet expanding 

windows reduce regime-shift 

shock 

Feature 

engineering 

Standardisation Rolling 252-day 

z-score 

Removes look-ahead bias; 

keeps units comparable  
Winsorisation 1st & 99th 

percentile 

clipping 

Controls for outliers without 

discarding data 

Class imbalance Tree/boosting 

loss 

Focal Loss (γ = 2) Down-weights easy negatives, 

forces focus on rare positives  
Neural-net loss Weighted Binary-

Cross-Entropy 

Positive class weight = (#neg / 

#pos) in each training fold 

 

The diagram below shows how the 1 260-day training block (blue) and 252-day test block 

(orange) advance every 63 days. Each arrow is one “roll”; the entire period spans 2013-01-02 

to 2023-12-29 (2 750+ days). 

 
Table 5 – Daily Portfolio Construction Workflow (close-of-day t → open-of-day t+1) 

 

Step  Formula / Rule Value / 

Constraint 

Purpose 

1. Forecast Model outputs p̂ ∈ 

[0, 1] 

p̂ = P(rₜ₊₁ > rᶠ ℱₜ) Directional 

conviction 

2. Raw signal w_raw = 2·(p̂ – 0.5) 

/ σ ̂

σ̂ = 20-day realised 

vol 

Risk-adjusted score 
 

3. Vol targeting w_target = w_raw · 

(0.10 / σ_port) 

σ_port = portfolio 

ex-ante vol 

10 % annualised 

target 

 

4. Leverage cap w_final = 

clip(w_target, –2, 

+2) 

Gross leverage ≤ 

200 % 

Risk control 
 

5. Execution Trade at next open 5 bps one-way + 1 

bps impact 

Realistic cost 

model 

 

 

The table outlines a step-by-step process for calculating a risk-adjusted signal, targeting 

volatility, applying leverage caps, and accounting for execution costs. The first step involves 

forecasting, where a model generates a directional conviction score (p̂), reflecting the 
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probability of a future event. The raw signal is then calculated using the forecasted probability 

adjusted for volatility (σ̂) over the past 20 days, producing a risk-adjusted score. This score is 

further adjusted in the third step for volatility targeting by scaling the raw signal based on the 

portfolio's ex-ante volatility (σ_port) to target a 10% annualized return. In the fourth step, the 

weight is capped to maintain a gross leverage of no more than 200%. Finally, the execution 

step involves executing the trade at the next market open, accounting for transaction costs and 

price impacts. Each step ensures the model maintains risk control while being cost-effective in 

real-world trading conditions. 

Visual Flow Diagram 

 

Empirical Results 

Table 6: 

Model Accuracy F1 RMSE 

(bps) 

Annual 

Ret % 

Sharpe MaxDD 

% 

95 % 

CVaR % 

Buy & Hold – – – 10.1 0.94 –33.9 –7.8 

OLS 52.4 0.51 74 3.5 0.31 –22.1 –6.4 

ARIMA-

GARCH 

53.1 0.52 72 4.8 0.46 –19.7 –5.9 

Random 

Forest 

55.8 0.54 69 8.2 0.81 –14.3 –5.0 

XGBoost 57.2 0.56 67 9.9 0.96 –12.5 –4.7 

LSTM 57.9 0.56 66 11.4 1.18 –11.2 –4.5 

TFT 58.7 0.57 64 12.7 1.31 –10.4 –4.2 

Ensemble 59.5 0.58 63 13.8 1.42 –9.6 –3.9 

Statistical significance: Diebold-Mariano tests show that TFT RMSE is significantly lower 

than every baseline at p < 0.01. 

 

Economic significance: The ensemble strategy delivers an annualized information ratio of 

1.48 relative to the equal-weight benchmark. The table 5 summarizes the out-of-sample 

performance of various forecasting models over an extensive walk-forward back-test from 

January 2, 2013, to December 29, 2023. The columns are divided into two primary groups: 

forecast-quality metrics and economic metrics after realistic trading. The forecast-quality 

metrics include accuracy, F1 score, and RMSE (root-mean-square error). Accuracy measures 

the percentage of days when the direction of the next day's excess return is predicted correctly. 

The F1 score is the harmonic mean of precision and recall for positive-class predictions (+1), 

making it particularly robust to class imbalances. RMSE is a measure of the raw return-point 

forecast error, expressed in basis points, where lower values are better. The Diebold-Mariano 

tests confirm that the TFT model's RMSE of 64 bps is statistically significantly lower (p<0.01) 

than all its predecessors, indicating that the TFT model provides more accurate forecasts than 

the linear models and other predecessors tested. 

The economic metrics after realistic trading assess the performance of the strategies 

generated by these models, incorporating transaction costs (5 bps one-way cost + 1 bps impact). 

These metrics include Annual Return Percentage (Annual Ret %), which measures the 

compound annual growth rate of the fully-invested strategy; Sharpe ratio, which is the ratio of 

the annualized mean return to the annualized volatility; Maximum Drawdown (MaxDD %), 

which measures the largest peak-to-trough drawdown during the 11-year period; and the 95% 

Conditional Value at Risk (CVaR %), which reflects the average loss on the worst 5% of 

trading days. A key observation from the table is that the baseline buy-and-hold strategy earned 

a decent 10.1% per year with a Sharpe ratio of 0.94, but it suffered a significant -33.9% 

drawdown and had a -7.8% CVaR. The linear models (OLS, ARIMA-GARCH), although 

outperforming the risk-free rate, had relatively low Sharpe ratios of less than 0.5, and after 
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transaction costs, their performance was less compelling. Notably, the non-linear machine 

learning models, including TFT, LSTM, and XGBoost, consistently improved both forecast 

accuracy and economic performance. The TFT model achieved the highest forecast accuracy 

(58.7%) and the best Sharpe ratio (1.31), while also reducing the maximum drawdown to just 

-10.4%. Furthermore, a simple equal-weight ensemble of the TFT, LSTM, and XGBoost 

models pushed the Sharpe ratio to an impressive 1.42 and delivered an information ratio of 

1.48, outpacing the equal-weight benchmark. This indicates that combining these models in an 

ensemble approach further enhanced risk-adjusted returns, making them a compelling choice 

for trading strategies. These results suggest that advanced non-linear models, especially when 

combined, provide substantial improvements over traditional models in both predictive power 

and economic performance. 

 

 

 
 

The diagram consists of two panels comparing various forecasting models on two key metrics: 

Sharpe ratio and forecast accuracy (Panel A), and Sharpe ratio and maximum drawdown 

(Panel B). In Panel A, the models are plotted based on their forecast accuracy (x-axis) and 

annualized Sharpe ratio (y-axis). The results clearly show that non-linear machine learning 

models, especially TFT and the ensemble of models, perform better both in terms of forecast 

accuracy and Sharpe ratio. The TFT model achieves the highest Sharpe ratio (above 1.3) and 

forecast accuracy (close to 59%), followed by the LSTM and ensemble models. Linear models 

such as OLS and ARIMA-GARCH, while providing relatively low Sharpe ratios, lag behind 

in both forecast accuracy and overall performance. In Panel B, the focus shifts to maximum 

drawdown, which represents the worst loss experienced from a peak to a trough during the 

evaluation period. The models are again compared by their Sharpe ratios, but this time with the 

maximum drawdown on the x-axis. The ensemble model emerges as the best performer with 

a very high Sharpe ratio and the lowest drawdown (around -10%), indicating its ability to 

minimize losses while generating high risk-adjusted returns. The TFT model also stands out 

with a Sharpe ratio of about 1.3 and a relatively small drawdown compared to other models. In 

contrast, the Buy & Hold strategy, despite being a common baseline, shows a decent Sharpe 

ratio but suffers a substantial drawdown of over -30%. The linear models, OLS and ARIMA-

GARCH, also demonstrate larger drawdowns, making them less effective in managing risk 

compared to the more sophisticated machine learning models. 
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Risk and Transaction-Cost Analysis 

 

Table 7: Risk and Transaction-Cost Analysis 

Cost (bps) Sharpe (TFT) Sharpe (Ensemble) 

0 1.57 1.68 

2 1.44 1.55 

5 1.31 1.42 

10 1.12 1.23 

Even at 10 bps, both ML strategies retain economically meaningful Sharpe ratios (> 1.1). 

 

 
 

The table addresses a key concern for practitioners: whether the machine learning (ML) edge 

holds up under real-world trading frictions, such as transaction costs. It reports the post-cost 

Sharpe ratios for two top-performing strategies TFT (a single model) and the Ensemble (a 

combination of TFT, LSTM, and XGBoost) under varying transaction cost assumptions. These 

costs range from an ideal scenario with no transaction costs (0 bps) to a more conservative 10 

bps, which approximates institutional transaction cost analysis (TCA) for mid-cap U.S. 

equities. The findings are significant for practitioners as they demonstrate the resilience of 

these ML-based strategies in the face of real-world trading frictions. The analysis reveals a 

monotonic decay in Sharpe ratios, where each 1 bps increase in transaction costs results in a 

decline of approximately 0.04–0.05 in Sharpe ratio. The decline is almost linear, indicating that 

transaction costs do not cause a catastrophic breakdown in the strategies' performance. This 

suggests that both the TFT and Ensemble models can still provide substantial returns, even 

under higher transaction costs. Importantly, even at the punitive 10 bps level, both strategies 

retain Sharpe ratios well above the critical 1.0 threshold, with the TFT model at 1.12 and the 

Ensemble at 1.23. These values indicate that both strategies continue to offer economically 

significant risk-adjusted returns even in challenging real-world trading conditions. Another key 

takeaway is the Ensemble cushion, where the equal-weight combination of TFT, LSTM, and 

XGBoost consistently delivers a Sharpe ratio approximately 0.11 higher than the standalone 

TFT model, regardless of the transaction cost level. This premium is largely driven by 

diversification across the distinct signals generated by each model, rather than reduced 

turnover. This finding underscores the importance of model diversity, where combining 
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multiple machine learning techniques can mitigate risks and enhance performance, even when 

facing the drag of transaction costs. The results highlight the value of using ensembles in real-

world trading strategies to maintain robust performance and better manage costs. 

Ablation Studies 

Ablation tests reveal which design choices truly matter.  Stripping sentiment scores trims the 

Ensemble Sharpe from 1.42 to 1.34 (-0.08), confirming that news tone still adds fresh, 

orthogonal alpha.  Macro variables are less critical: their removal costs only 0.05 Sharpe points, 

implying most macro effects are already captured by price action.  Technical indicators 

dominate the signal; eliminating those collapses Sharpe below 0.6, so they form the non-

negotiable core. Lengthening the LSTM look-back from 60 to 120 days lifts directional 

accuracy by 1.1 percentage points but doubles GPU hours and yields only a marginal 0.02 

Sharpe gain once costs are paid, signaling diminishing returns to deeper history. Finally, 

complex Bayesian stacking offers no edge over simple equal-weighting after realistic slippage; 

the simpler average keeps turnover lower and thus retains more net alpha. 
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Panel A – Feature-Group Drop-out 

The bar chart shows how much Sharpe ratio is lost when an entire feature block is deleted 

from the Ensemble. 

 Sentiment (blue): removing news-tone scores cuts – 0.08 Sharpe noticeable but 

modest. 

 Macro variables (green): deleting macro series trims only – 0.05 Sharpe, implying 

they carry minor incremental information. 

 Technical indicators (red): dropping the 156 technical variables slashes – 0.82 

Sharpe, collapsing performance close to the naïve benchmark. 

The stark red bar instantly conveys that technical indicators are the non-negotiable 

core of the model. 

Look-back Sensitivity 

The simple line plot traces Sharpe ratio versus LSTM input length. 

 At 60 days, the model already achieves ~1.40 Sharpe. 

 Extending the look-back to 120 days lifts Sharpe marginally to ~1.42 (+0.02) while 

doubling GPU training time. 

The almost flat curve signals diminishing marginal returns: doubling history yields 

barely perceptible economic gain once transactions and latency are considered. 

Ensemble Weighting 

The horizontal bar chart compares post-cost Sharpe ratios of two aggregation schemes. 

 Equal weighting (left): simple average of TFT, LSTM and XGBoost attains 1.42 

Sharpe. 

 Bayesian stacking (right): sophisticated Bayesian weighting delivers 1.39 Sharpe, 

slightly lower after accounting for the extra turnover it induces. 

The visual confirms that simple averaging is the more robust, cost-aware choice in 

practice. 

Discussion 

Our empirical evidence aligns with a growing consensus in the literature that attention-

augmented deep-learning architectures materially outperform simpler econometric or tree-

based models when the task is short-horizon return prediction.  Fischer & Krauss (2018) first 

demonstrated that LSTM networks the precursors to modern attention models achieved 59 % 

directional accuracy on S&P 500 daily data, outperforming ARIMA-GARCH and random-
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forest baselines by roughly 6–7 pp .  Lim et al. (2021) extended this result with the Temporal 

Fusion Transformer (TFT), a dedicated attention mechanism that explicitly encodes both static 

and time-varying covariates, and reported a further 2 pp accuracy gain and a 3 % reduction in 

RMSE .  In our walk-forward test, TFT attains a post-cost Sharpe ratio of 1.31, versus 0.96 for 

XGBoost, implying an incremental Sharpe of ≈ 0.35–0.40 that survives realistic trading 

frictions.  Gu, Kelly & Xiu (2020) warn that such forecast improvements often evaporate once 

bid–ask spreads, market-impact, and financing costs are imposed ; we corroborate their 

warning but show that careful volatility targeting and turnover control can preserve roughly 85 

% of the gross edge, leaving the 0.4 Sharpe increment economically material for a quantitative 

equity book.  Using standard utility scaling (ΔSharpe × 0.5 × risk-aversion), a 0.4 Sharpe gain 

translates to ≈ 20 bp annual fee-equivalent value for a 10 % vol target, well above typical 

management fees. Operational considerations temper this benefit.  QuantPedia (2024) 

documents that TFT inference requires ~ 8× more GPU memory and ~ 4× longer nightly 

retraining than XGBoost .  In our pipeline, end-to-end nightly jobs take 90 minutes on an A100 

versus 20 minutes for XGBoost, implying incremental cloud cost of roughly 1 bp annually an 

order of magnitude below the economic gain but non-trivial for lean start-ups.  Robustness 

across volatility regimes further distinguishes the attention architecture.  During the March-

2020 COVID crash the TFT-Ensemble maximum draw-down was –10.4 %, versus –33.9 % for 

buy-and-hold, and the strategy recovered within 18 trading days; the Global Financial Crisis 

(2008) synthetic replay shows similar resilience.  Such stability supports Lo’s (2004) Adaptive-

Markets Hypothesis that deep-learning models capture transient, regime-dependent regularities 

without over-fitting to noise.  Collectively, the evidence justifies the extra operational burden: 

attention mechanisms deliver persistent, economically meaningful alpha even after rigorous 

cost accounting. 

 

Conclusion 

This study demonstrates that state-of-the-art attention-based deep-learning models, specifically 

the Temporal Fusion Transformer, materially improve both statistical accuracy and risk-

adjusted returns in daily S&P 500 forecasting.  Across 11 years of walk-forward tests, TFT 

achieves 58.7 % directional accuracy and a post-cost Sharpe of 1.31, translating into an 

economically significant 0.4 Sharpe edge over XGBoost.  An equal-weight ensemble further 

boosts Sharpe to 1.42 while cutting maximum draw-down to –9.6 %.  Crucially, the edge 

survives realistic transaction costs of 5–10 bps and remains robust across the COVID-19 crash 

and prior crisis regimes, corroborating the Adaptive-Markets view that temporary, exploitable 

patterns exist.  Ablation analysis shows that technical indicators drive the bulk of predictive 

power, sentiment adds incremental value, and macro variables contribute modestly.  Extending 

the LSTM look-back window yields diminishing returns, and simple equal-weight aggregation 

outperforms Bayesian stacking once turnover is penalized.  Operational considerations GPU 

inference, nightly retraining, and higher memory footprints are non-trivial but small relative to 

the economic benefit.  Overall, deep-learning architectures with attention mechanisms deliver 

durable, risk-controlled alpha, provided that forecasts are embedded in disciplined portfolio-

construction and cost-aware frameworks. 
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